STUDY TO EVALUATE BLOOD LOSS AFTER REAMING IN INTRAMEDULLARY NAILING OF FRACTURES OF SHAFT OF FEMUR AND FRACTURES OF SHAFT OF TIBIA

Ravindra Bhalchandra Gunakı, Rupesh Arvinbhai Gor®, Jimit Deepak Shah®, Vaibhav Jagnath Koli®, Sudeep Umesh Koli®

1Professor, Department of Orthopaedics, Krishna Institute of Medical Sciences Deemed University, Karad.
2Resident, Department of Orthopaedics, Krishna Institute of Medical Sciences Deemed University, Karad.
3Resident, Department of Orthopaedics, Krishna Institute of Medical Sciences Deemed University, Karad.
4Resident, Department of Orthopaedics, Krishna Institute of Medical Sciences Deemed University, Karad.
5Resident, Department of Orthopaedics, Krishna Institute of Medical Sciences Deemed University, Karad.

ABSTRACT

BACKGROUND
It is a well-known fact that significant blood loss occurs after long bone reaming in intramedullary nailing. Still, limited research has been done to evaluate the blood loss after specific amount of reaming. In this study, we have tried to evaluate the same.

MATERIALS AND METHODS
It is a combined retrospective and prospective comparative study. Data of 240 patients having isolated shaft of femur fractures (100 cases), isolated shaft of tibia fractures (100 cases) & ipsilateral or contralateral femur + tibia fractures (24 cases), treated with reamed interlocking intramedullary nails and within the age group of 20-60 years was collected. Haemoglobin and PCV values on the day of operation and values after 24 hours after the procedure were noted as parameter for blood loss. Reaming was started from 8.5 mm and done up to chatter sound heard while reaming. Cases with open fractures, patients with blood disorder to whom intra or post-operative blood transfusion was given, were excluded. Fracture union was evaluated from radiographs taken at every 4 weeks' interval.

RESULTS
It was found that post-operative haemoglobin levels were low as compared to pre-operative values, which was statistically significant (p value <0.0001). The loss of haemoglobin was not influenced by factors like age, sex, side. The mean loss of haemoglobin was 2.75 g%. The mean union time was 18.11 weeks.

CONCLUSION
We conclude from the results obtained there is significant correlation between reaming and volume of blood loss. It was observed that as there is increase in diameter of reaming of medullary canal of bone; blood loss also increases proportionately.

KEYWORDS
Reaming, Blood Loss, Femur Fracture, Tibia Fracture, Intramedullary Nailing.

HOW TO CITE THIS ARTICLE: Gunaki RB, Gor RA, Shah JD, et al. Study to evaluate blood loss after reaming in intramedullary nailing of fractures of shaft of femur and fractures of shaft of tibia. J. Evid. Based Med. Healthc. 2016; 3(41), 2041-2045. DOI: 10.18410/jebmh/2016/455

INTRODUCTION: Diaphyseal fractures of the long bone are the commonest fractures encountered in orthopaedic trauma. Treatment methods include closed reduction and casting, skeletal traction, external fixation, and internal fixation. In which, internal fixation is the preferred treatment method because of better fragment alignment and stabilisation, earlier return of joint function and mobility, and a shorter duration of disability. Internal fixation is mainly achieved by plate fixation and intramedullary nailing. Comparing clinical results from plate fixation and intramedullary nailing, intramedullary nailing is a load-sharing device providing better stability of fractures with lower levels of infection rate and non-union rate than that of infection rate and non-union rate in the plate fixation.¹ ² ³

Therefore, intramedullary nailing is recommended as the treatment of choice for long bone shaft fractures.⁴ ⁵ However, this technique is confined to a well-matched nail and medullary canal. When using a large nail, the isthmus impedes the insertion of the nail and results in either jamming of the nail or an iatrogenic fracture. A small nail makes the insertion easy, but the stiffness of the nail is decreased resulting in nail bending, breakage and migration. In order to avoid these problems, reaming of the intramedullary cavity concept came into consideration. Reaming increases the inner diameter of the medullary canal by removing the inner cortical bone, therefore, a larger diameter nail can be used and provides better stability.

However, reaming can cause several adverse effects in the medullary canal including disturbance of intramedullary circulation, which will lead to additional blood loss postoperatively. Present study is an attempt to evaluate blood loss after reamed intramedullary nailing in form of comparing pre-operative and post-operative haemoglobin and packed cell volume levels between patients with isolated fractures of shaft of femur, isolated fractures of shaft of tibia.
and ipsilateral or contralateral femur and tibia fractures. Present study also assess healing at fracture site and its relationship with reaming.

AIMS & OBJECTIVES: To evaluate blood loss after closed reduction & internal fixation using reamed interlocking intramedullary nails in isolated fractures of shaft of femur, isolated fractures of shaft of tibia and ipsilateral or contralateral shafts of femur & tibia groups. To compare blood loss and preoperative & postoperative haemoglobin & PCV levels between patients with isolated fractures of shaft of femur, in isolated fractures of shaft of tibia, in ipsilateral or contralateral fractures of shaft of femur & tibia. To assess healing at the fracture site and its relation with reaming done during internal fixation.

MATERIALS AND METHODS: This is a combined retrospective and prospective comparative study with sample size of total 224 cases. In which, 100 cases of isolated fractures of femur, 100 cases of isolated fractures of tibia and 24 cases of fractures of femur & tibia.

Inclusion Criteria: Closed fractures involving isolated femur, isolated tibia, ipsilateral or contralateral femur and tibia treated with closed reduction and reamed intramedullary interlocking nailing.

Exclusion Criteria: Closed shaft of femur and tibia fractures but treated with open reduction and internal fixation. Closed reduction and femur and/or tibia nailing procedure in which intraoperative or immediate postoperative blood transfusion was given. Fractures with neurovascular injuries and compound fractures were excluded from study.

Data Collection: Data was collected from the patients attending the orthopaedic department with fractures of shaft of femur, fractures of shaft of tibia and ipsilateral or contralateral shaft of femur & tibia fracture and satisfying the inclusion criteria. Detailed history was taken about age, sex, occupation, mode of injury, past history and associated medical illness. Thorough clinical examination and general condition was assessed. Associated orthopaedic and other systemic injuries were assessed and managed accordingly. Radiographs were taken in 2 planes, AP and lateral including x-ray of ipsilateral hip and knee joints and ankle joints if required.

To maintain hydration of the patient and to maintain blood pressure of the patient, standardised fluid and transfusion procedures were enforced to all three study groups. Fluid therapy consisted of rehydration fluid (normal saline/DNS/RL) according to need of patient were given. Input and output charting of the patient is done from the day of admission till patient was discharged. Height (in cm) & weight (in kg) of the patients were calculated. Haemoglobin percentage (Cyanmethemoglobin method) and packed cell volume (PCV) on the day of operative procedure were noted.

All other routine pre-operative investigations were carried out. After operative procedure, patient was kept nil by mouth for 4-6 hours. Intravenous fluids were given to maintain hydration of the patient. (Average 2 pint Ringer lactate for femur group and 1 pint normal saline for tibia group). Haemoglobin and PCV values were recorded 24 hours post-operatively. Analgesics were given according to the needs of the patient. Postoperative radiographs in AP and lateral view were taken.

Calculation method for evaluating blood loss.5
(Haemoglobin balance method was used)

\[V_{\text{loss}} = 1000 \times \frac{Hb_{\text{total}}}{Hb_{\text{preoperative}}} \]

In this, \(V_{\text{loss}} \) (mL): The total volume of RBC loss

\[Hb \text{loss total (g)} = BV \times (Hb_{\text{post}} - Hb_{\text{pre}}) \times 0.001 \]

For males, \(k1 = 0.3669, k2 = 0.03219, \) and \(k3 = 0.6041, \) While for females, \(k1 = 0.3561, k2 = 0.03308, \) and \(k3 = 0.1833 \)

(\(H \) is height of patient in cm and \(W \) is weight of patients in kg)

In this study, totally 72 patients were assessed for healing at fracture site. In which 30 patients were of femur fracture group and 30 patients of tibia fracture group and 12 patients of femur+tibia fracture group. We followed up all these patients and took x-rays of affected limb at every 4 weeks interval.

RESULTS: Average age of the patient in femur group is 42.5 years, in tibia group is 42 years and in femur+tibia group is 36.8 years. That suggests both femur and tibia fractures comparatively occur in younger patients (Table 1). A nearly total male predominance is seen (Femur-61%, Tibia-72%, Femur+Tibia-96%) (Table 2). Right side is more commonly involved than left side (Femur-58%, Tibia-53%, Femur+Tibia-65%). In cases of femur and tibia both bone fractures, ipsilateral side (71%) is more involved than contralateral side (29%).

<table>
<thead>
<tr>
<th>Study Group</th>
<th>Femur Group</th>
<th>Tibia Group</th>
<th>Femur+Tibia Group</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mean Age of patients</td>
<td>42.5 years</td>
<td>42 years</td>
<td>36.8 Years</td>
</tr>
</tbody>
</table>

Table 1: Age Distribution

<table>
<thead>
<tr>
<th>Study Group</th>
<th>Femur Group</th>
<th>Tibia Group</th>
<th>Femur+Tibia Group</th>
</tr>
</thead>
<tbody>
<tr>
<td>Male</td>
<td>61</td>
<td>72</td>
<td>23</td>
</tr>
<tr>
<td>Female</td>
<td>39</td>
<td>28</td>
<td>1</td>
</tr>
</tbody>
</table>

Table 2: Sex Distribution

In this study, total average 2.53 mm reaming was done. (Femur average reaming-2.42 mm, tibia average reaming-2.2 mm and femur+ tibia average reaming – 3 mm).
Mean haemoglobin drop in isolated femur group was 2.768 g% (SD=1.538). Mean haemoglobin drop in isolated tibia group was 1.883 g% (SD=1.504). In this study, total mean haemoglobin level decreased from 12.97 g/dL (ranges 8 to 17) to 10.11 g/dL (ranges 6- 14.5). Mean PCV loss in isolated femur group is 8.428 % (SD=4.788). Mean PCV loss in isolated tibia group is 6.105% (SD=4.553) and Mean PCV loss in femur and tibia group is 11.746% (SD=5.150).

There was significant decrease in haemoglobin levels with increased amount of reaming (p value=0.0001). With average 1 mm reaming, there is significant 1 g% haemoglobin level drop seen in our study in both femur and tibia group. But tibia group, there is less amount of haemoglobin drop as compared to femur group.
DISCUSSION: We found that fractures of femur were most common in 3rd and 4th decade of life, with mean age of 42.5 years. Fracture of tibia was also most common in 3rd and 4th decade of life, with mean age of 42 years. Fracture of femur and tibia was most common in 2nd and 3rd decade of life, with mean age of 36.8 years. Court–Brown et al⁶ (1996) in his series shows mean age of 41.5 years. Keating et al⁷ (1997) in his study found out mean age of patient is 47 years. Males were predominantly prone to fractures of long bone due to high incidence found in motor vehicular accidents. 61% of femur, 72% of tibia and 96% of femur+tibia of our patients were male. Wiss – Fleming,⁸ (1986), male predominance (83.7%) found in his 111 patients series. Alho et al⁹ (1991) reported 55% male predominance in 120 patients.

In this study, total average 2.53 mm reaming was done in which, femur average reaming was 2.42 mm, tibia average reaming was 2.2 mm and femur+tibia average reaming was 3 mm. Gannoudis et al¹⁰ in his series of 18 patients shows average reaming of 2.5 mm, which was equal to our study value. Heim et al¹¹ in his study shows that more amount of reaming, more rise in intramedullary pressure which will lead to more blood loss. In this study, total means haemoglobin level decreased by 2.843 g % and mean PCV value decreased by 8.76%. Shepherd et al¹² (2001) in his series found that after intramedullary reaming, there was significant blood loss of 1.07 g% (278 mL) which was less as compared to our study results. Selvakumar et al¹³ (2001) in his series found out total 1.24 g% of blood loss after reamed intramedullary nailing procedures.

Average mean fracture union time in present study is 18.11 weeks. Meta-analysis by Deting et al¹⁴ (2009) shows average union time of 18.45 weeks which is similar to our study group. Court –Brown et al¹⁵ (1996) in his series found out mean union time of 15.4 weeks. Nagraj et al¹⁶ (2000) shows his results with mean union time of 17.3 weeks. Wiss et al shows mean union time 28 weeks, which is more as compared to our study group.

Infection: There were 5 patients of infection (femur group 2 patients & tibia group 2 patients, 1 patient in femur+tibia group), all five patients had superficial infection. Nagaraj et al¹⁶ (2000) had a 2 patients of superficial infection.

Chiu et al¹⁷ in his series of patients, superficial infection was seen in 4 patients. There were 6 patients with delayed union (femur group 3 patients & tibia group 3 patients). Blachut et al¹⁸ had a 7 delayed union cases in his data. Christie et al¹⁹ reported delayed union in 2 patients (i.e. 1.7%) in 117 patients. In our study, there were incidences of implant looansing in 3 patients (femur group 2 patients & tibia group 1 patient). All three cases had loosening/backing out of distal locking screws. Blachut et al¹⁸ in his series shows 2 broken screws and 4 backed out screws. Chiu et al¹⁷ in his study found out 1 case of screw back out.

CONCLUSION: Our study showed that there was significant blood loss (decreased post-operative haemoglobin and PCV levels) after reamed intramedullary nailing in isolated femur, isolated tibia and femur+tibia study groups. In this study, there was statistically significant correlation between amount of reaming and amount of blood loss (decreased post-operative haemoglobin and PCV levels). It is observed that more the amount of reaming, more the amount of blood loss. So before performing the intramedullary nailing procedures, the preparation for blood transfusion should be taken into consideration, even in closed nailing. In our study, it is observed that amount of reaming does not affect fracture healing time; though larger sample size is required to assess relation between reaming and fracture union. The blood loss (decreased post-operative haemoglobin and PCV levels) was not influenced by factors like age, sex, side in all three study groups.

REFERENCES

