MID-CLAVICULAR FRACTURES TREATED WITH TENS: A PROSPECTIVE STUDY
Abhijit A. Patil1, Somashekara S. A2, Darshan M. S3

1Senior Resident, Department of Orthopaedics, Bowring & Lady Curzon Hospital, BMCR, Bangalore.
2Assistant Professor, Department of Orthopaedics, Bowring & Lady Curzon Hospital, BMCR, Bangalore.
3Junior Resident, Department of Orthopaedics, Bowring & Lady Curzon Hospital, BMCR, Bangalore.

ABSTRACT

BACKGROUND
This prospective consecutive case series was done to evaluate indications, technical pearls and pitfalls and functional outcomes of Titanium elastic nailing system of displaced mid-clavicular fractures and the effectiveness of the Titanium elastic intramedullary nails in the surgical treatment of the mid-clavicular fractures in adults.

MATERIALS & METHODS
A total of 60 patients (45 male, 15 female) were included in this study. Constant score and radiographs were evaluated after 1 and 6 weeks, 3 months and 6 months in 60 patients. Mean age was 28 years.

RESULTS
Length of incision, operation time, blood loss and duration of hospital stay were significantly less. The average follow-up was 17 months. Mean operation time was 62 minutes. Open reduction through an additional small incision was necessary for some fractures. Mean hospital stay was 1.2 days. The Constant score averaged 80 after 1 week, 96 after 6 weeks and 98 after 6 months. Compared to the contralateral side, average shortening of the clavicle was 1.7 mm.

CONCLUSION
Titanium Elastic Nailing System provided a good restoration of the length of the clavicle allowing immediate active mobilisation and early return to normal activity with excellent functional results.

KEYWORDS
Clavicle Fractures; Titanium Elastic Nailing System.

INTRODUCTION: Fracture of the clavicle is a frequently seen injury which represents about 10-15% of all fractures in adults. In most cases, a fall with a direct trauma causes the clavicle to fracture. About 80% of all clavicular fractures involve the middle third of the bone. Standard treatment for this fracture pattern is non-operative, using an arm sling or figure-of-eight bandage for external fixation. For open fractures, imminent skin perforation, neurovascular involvement, floating shoulder or in combination with multiple ipsilateral rib fractures, open reduction and plating is generally accepted. While fracture healing and functional outcome is generally good for non-operatively treated mid-clavicular fractures, a poor cosmetic result due to shortening and angulation is not uncommon. Non-unions occur in an average of 5%. Furthermore, decreased shoulder function due to clavicular shortening of more than 1-2 cm after non-operative fracture management has been reported.

Whereas a mild decrease in shoulder function is easily tolerated by most patients, restoration of the clavicle length and early return to full activity with unimpaired function is of great importance for every individual irrespective of the profession or socio-economic group they belong to. As non-operative treatment is successful in most cases for this fracture, relevant clinical benefit may be limited to a selected group of patients with a high demand on shoulder function. Titanium Elastic Nailing System (TENS) of the clavicle is a minimally invasive procedure and aims at exact restoration of the clavicular length with early return to full activity, with a good cosmetic result and minimal morbidity.

Inclusion Criteria:
1. Closed mid-clavicular fracture (OTA 06-A/B) with shortening of at least 1 cm.
2. Lack of interfragmentary contact.

Exclusion Criteria:
1. Clavicular fractures with marked comminution.
2. Duration of more than 4 weeks.
3. Open fractures.
4. Pre-existent morbidity of the ipsilateral arm, shoulder or hand.
5. Presence of neurovascular injury, and ipsilateral injuries.
MATERIALS AND METHODS: Between June 2013 and June 2015, a total of 60 patients with closed displaced mid-clavicular fractures were admitted in BMCRI (Victoria Hospital and Bowring & Lady Curzon Hospital). Patients were recruited according to particular inclusion and exclusion criteria. Informed consent was obtained. Only isolated closed fractures of the mid-clavicle (OTA 06-A/B) with a clavicular shortening of at least 1 cm and/or lack of interfragmentary contact were included. Patients between the age of 16-50 years for whom impairment of shoulder function would interfere with their activities were accepted for the study. Patients were excluded if they had fractures with marked comminution, duration of more than 4 weeks, open fractures, pre-existent morbidity of the ipsilateral arm, shoulder or hand, presence of neurovascular injury, and ipsilateral injuries. Radiographs of the fractured clavicle were obtained in anteroposterior and 45° cephalic tilt views. No additional imaging for the assessment of the clavicle was performed. Operation time, intraoperative technical problems, local complications and functional outcome were analysed. The patients were encouraged to use their shoulder without restriction immediately after surgery. Standard analgesia was given (Diclofenac 75 mg and Tramadol 27.5 mg) when required. Clinical examinations and radiological studies were performed on days 7 and 42, at 3 and 6 months and after hardware removal. Clavicular length was clinically measured when bony consolidation was evident (distance from the centre of the jugular fossa to the lateral tip of the acromion) and compared with the contralateral side. Functional outcome was assessed using the Constant shoulder score.\(^{(5)}\) Hardware removal was performed once bony consolidation was evident or later according to the patient’s preference.

Surgical Procedure: The intervention was performed under interscalene & superficial cervical nerve blocks. Standard antibiotic single shot prophylaxis (Cefuroxime 1.5 g IV) was given. The patient was placed on a radiolucent operating table in the supine position. A towel roll was placed between the scapulae to provide extension of the shoulder girdle. It is important to scrub the whole ipsilateral upper extremity to allow free manipulation of shoulder and arm during the procedure. A single image intensifier was used for the procedure. A short skin incision of about 1 cm was made just lateral to the sternoclavicular joint centred above the medial end of the clavicle (Fig. 1). The medullary cavity of the clavicle was opened using a k-wire about 1 cm lateral to the sternoclavicular joint. The k-wire was pointed laterally in-line with the clavicle and angled at about 30 degrees to the coronal plane (Fig. 2). Care was taken not to perforate the dorsal cortex in order to avoid major complications. Once the medullary cavity was opened, a 3 mm awl was used to widen the entry point (Fig. 3) and a preselected TENS was carefully inserted. The implanted nails had diameters between 2.0 and 3.0 mm according to the patient’s dimensions. No reaming was necessary. The nail was fixed in a universal chuck with a T handle and advanced with oscillating movements (Fig. 4) once the Titanium nail reached the fracture site (Fig. 5), closed reduction by direct pressure on the fragments combined with manipulation of the arm was performed.

Usually, reduction was facilitated when a small pointed reduction forceps was applied percutaneously to the lateral fragment. The fracture was bridged using the rounded and angled tip to guide the Titanium nail into the lateral fragment. To determine the exact position of the Titanium nail, fluoroscopy with true perpendicular views is crucial. In some cases, closed reduction may not be accomplished. In these cases, a short incision directly over the fracture site (2 cm) with minimal dissection is suggested to reduce the fracture. The TENS was then pushed gradually into the distal part of the clavicle close to its extremity by oscillating it. The protruding medial end of the nail was left out of the cortex and shortened close to its entry point into the bone followed by wound closure.

RESULTS: A total of 60 patients (45 male, 15 female) qualified for the study according to the inclusion criteria between 06/2013 and 06/2015. No potential candidate refused to enter the study by preferring non-operative treatment. Mean age was 28 years (Range: 16 to 40). The mechanism of injury was a direct trauma to the shoulder in 57 patients, 3 patients fell on their extended arm. Forty seven fractures were caused by road traffic accidents and 13 were sports injuries. The fractures were graded according to the Orthopaedic Trauma Association classification (OTA). There were fourteen 06-A1, twenty one 06-A2 and thirteen 06-A3 fractures in our series. Wedge fractures were found in 12 patients (06-B2 and 3 06-B3 fractures). The operation was performed 6 days (1-26 days) after trauma. Only Titanium nail diameters of 2.0, 2.5 and 3.0 mm were used. Closed reduction was possible in 40 cases. A short incision of about 2 cm above the fracture site was necessary to obtain fracture reduction in 20 patients. Mean operation time was 62 minutes (Range: 20 to 123). Operation time was much shorter when closed reduction was successful compared with the open technique 39 minutes (Range: 20 to 60) vs. 84 minutes (Range: 37 to 123). No correlation was found between reduction technique and fracture classification. When the operation was delayed for more than 7 days, closed reduction was never achieved suggesting that patients benefit from an early intervention with better chances for successful closed reduction. A smaller implant should be chosen if it is not possible to advance the Titanium nail by oscillating movements only. No metal fatigue failure was observed with either size of implant. No other intraoperative complication occurred. Hospital stay was 1.2 days (range: 1 to 3). Post-operatively, painless shoulder range of movements was possible (Fig. 6) in all patients. All the patients could be followed according to the study protocol. Mean follow-up was 17 months (range: 12 to 24). No infection or migration of the Titanium nail was observed. All fractures healed, no delayed or non-union was observed. Time to healing was 7.7 weeks (range: 6 to 12) determined by visible osseous callus formation on the radiographs. Clavicular shortening was 1.7 mm (range:
DISCUSSION: Simple closed fracture of the mid-third clavicle is a frequent injury and mostly treated non-operatively. Although fracture healing and functional outcome is usually satisfactory, significant shortening with mal-union or non-union is described in the literature. Whereas some authors report good functional results in patients with clavicular shortening, Matis et al. found an impaired shoulder function in half of their patients with a shortening of 1 cm and in 100% when shortening was 2 cm. Hill et al. reported a clear correlation of non-unions (15%) with clavicular shortening of more than 2 cm. They found unsatisfactory results in 31% of completely displaced mid-clavicular fractures after non-operative treatment. Besides non-union, residual persistent pain, brachial plexus irritation and poor cosmetic results were observed. According to Jupiter and Leffert, the initial displacement is one of the most predisposing factors in the development of non-unions. Furthermore, non-operatively treated clavicular fractures cause pain, discomfort and disability which are often not adequately appreciated by the treating physician. For patients with a high demand on shoulder function and good cosmetic appearance, such prospects are barely acceptable. To meet these patient's expectations, a minimally invasive procedure which provides restoration of the clavicular length combined with early resumption of activities, complete functional recovery and a good cosmetic result may be an attractive alternative to non-operative management. Open reduction with plate fixation is the operative standard treatment for clavicular shaft fractures. Potential complications include deep infection, injury to the subclavian vessels, screw loosening with implant failure, non-union and re-fracture after hardware removal. Bostman et al. reported a complication rate of 23% following plate fixation. The cosmetic results are unsatisfactory caused by an inevitable and often hypertrophic scar. Due to these problems non-operative treatment of uncomplicated mid-clavicular fractures is still favoured by most surgeons. In contrast, TENS as a potential alternative overcomes several disadvantages of plate fixation. The incision is kept short, providing a better cosmetic result. Restoration of clavicular length can reliably be maintained with minimal exposure and a limited amount of hardware. In about half of the interventions, closed reduction of the fracture is successful, which provides the best conditions for undisturbed fracture healing. Even when open reduction cannot be avoided, exposure can be kept to a minimum in order to avoid additional tissue damage. Most patients can be treated as day cases and full mobility of the shoulder is achieved early on. As postoperative instructions for the patients include no restrictions regarding range of motion, the level of activity is determined only by pain and the patient's motivation for an early resumption of full shoulder function. Despite this rather aggressive postoperative regimen, we observed neither implant failure nor migration. All fractures healed correctly resulting in a symmetrical shoulder girdle. Resumption of normal daily activities with full function was achieved by all patients within 4 weeks postoperatively. Intramedullary fixation of clavicular shaft fractures is not a new idea; it dates back to Lambotte at the beginning of the last century. Murray published his technique of intramedullary Kirschner wire fixation in 1940. Since then, numerous technical variations have been published.

Implant migration with fatal complications, implant failure and mal- and non-unions have been described in the literature. Due to the complication rate which exceeds the problems of non-operative management, all these techniques have never found general acceptance. In contrast to Kirschner wire fixation, TENS is a truly intramedullary stabilisation technique. The flexible Titanium nail is firmly anchored in the S-shaped clavicle according to the principles described by Ligier et al. The largest series of Titanium Elastic Nailing System for mid-clavicular fractures so far was published by Jubel et al. in 2002. In their case series, 65 mid-clavicular fractures were stabilised applying the Titanium Elastic Nailing System technique. Patient age ranged from 13 to 74 years. Unlike our study, they also included patients with neurovascular involvement, multiple injuries and floating shoulders. No major complications were observed. Only one non-union in a polytrauma patient and one secondary shortening of 1.5 cm in a multi-fragment fracture were seen. Intramedullary advancement of the blunt Titanium nail makes an injury to the neurovascular structures very unlikely. No such complication has been described in the literature using this technique. Other fatal complications like implant migration into the chest cavity have not been observed either. Migration in a lateral direction would cause damage to the acromioclavicular joint whereas migration medially would simply lead to skin perforation. Despite our enthusiasm for Titanium Elastic Nailing in mid-clavicular fractures, we remain restrictive regarding its indications. In our opinion, non-operative management is still the gold standard which provides good results in most cases, leaving Titanium Elastic Nailing as a valuable technique for selected cases. From a technical point of view, simple fractures with a lack of bony contact or with considerable shortening are ideal indications.
clavicular circumference, it is mandatory to string this fragment as well in order to prevent secondary shortening and implant perforation through the skin. Titanium Elastic Nailing can certainly not be recommended for comminuted fractures as the above principles do not apply in these fracture patterns. Further studies are necessary comparing Titanium Elastic Nailing with non-operative treatment. The cost needs to be justified against the potential patient risk and statistically significant improvements need to be demonstrated for different patient groups. However, in selected cases, Titanium Elastic Nailing System is a safe and effective method for mid-clavicular fractures with a low complication rate once potential technical pitfalls are appreciated. Restoration of clavicular length is reliable. Cosmetic and functional results are excellent and a quick recovery makes early resumption of activities possible.

ACKNOWLEDGEMENT: The author did not receive any grants or outside funds for support of the research or manuscripts preparation. No funding was received for this work from any of the organisation.

REFERENCES