HISTOLOGICAL STUDY OF THE AGE-RELATED CHANGES OF THE CERVIX

Monjushree Chakravarty¹, Annie Doley²

¹Associate Professor, Department of Anatomy, Tezpur Medical College, Assam. ²Assistant Professor, Department of Anatomy, Tezpur Medical College, Assam.

ABSTRACT

BACKGROUND

The uterine cervix is one of the common site of pathology in female worldwide and especially in the developing countries. The study was undertaken in Gauhati Medical College with the view to see the age-related changes in the histological structure of the cervix.

METHODS

The specimens were divided into three groups, viz. pre-reproductive, reproductive and postmenopausal. Twenty specimens were collected of each group. The results were statistically analysed and 't' test were employed to find out the significant difference between the mean values.

RESULT

Histological structure of the cervix of each group viz. pre-reproductive, reproductive and postmenopausal was observed. The wall of the cervix contains three layers, namely inner mucosal, middle muscular and outer serosal layers. The mucosal thickness was measured and statistically analysed.

CONCLUSION

A study was done to find the histological structure of each group viz. pre-reproductive, reproductive and postmenopausal as the cervix is a common site of malignancy and other pathologies. The study was done with the view to help in the diagnosis and treatment of diseases of the cervix.

KEYWORDS

Cervix, Age-Related Changes.

HOW TO CITE THIS ARTICLE: Chakravarty M, Doley A. Histological study of the age-related changes of the cervix. J. Evid. Based Med. Healthc. 2016; 3(73), 3977-3981. DOI: 10.18410/jebmh/2016/850

INTRODUCTION: The cervix is the terminal end of the uterus. It is divided into two parts by the vagina, viz. supravaginal and vaginal part. The cervical canal opens into the exterior. As the cervix protrudes into the vagina, it is venerable to infection and trauma; hence, it is a common site of pathology. The wall of the cervix consists of three lavers viz. inner mucosal, middle muscular and outer serosa. The mucosa in the upper part is composed of columnar epithelium with tubular glands overlying a fibrocellular connective tissue stroma. In the lower part of the canal, the mucosa is non-keratinised stratified squamous epithelium. The intermediate layer is composed mainly of dense collagenous and elastic fibres among which fibroblast and variable number of smooth muscle cells is distributed. The outer layer of the cervix is composed of peritoneum (mesothelium overlying a connective tissue lamina propria). The histological study of cervix was conducted with the view to aid clinicians deal

Financial or Other, Competing Interest: None. Submission 22-08-2016, Peer Review 30-08-2016, Acceptance 07-09-2016, Published 10-09-2016. Corresponding Author: Dr. Monjushree Chakravarty, Associate Professor, Department of Anatomy, Tezpur Medical College and Hospital, Bihaguri, Tezpur-784010, Assam. E-mail: megha_ascoms@gmail.com DOI: 10.18410/jebmh/2016/850 with patients who are at risk of cervical malignancy, which is predominant among the women worldwide.

MATERIALS AND METHODS: The study of the human cervix was conducted in the Department of Anatomy, Gauhati Medical College. The cervices were grouped into three according to the age namely, Pre-reproductive (newborn to 13 yrs.), Reproductive (14 yrs. to 49 yrs.) and Post-menopausal (50 yrs. and above). The results were statistically analysed and 't' test were employed to find out the significant difference between the mean value. The cervices were collected from the autopsies done in the Forensic Medicine Department, Gauhati Medical College.

Specimens were collected from the cadavers following all legal formalities when autopsies were done within stipulated time limit. Care was taken to collect the nonpathological specimen. Rape and poisoning cases were excluded. Specimen were also dissected out from fresh fullterm intrauterine dead and neonatal dead babies collected from the Obstetrics and Gynaecology Department, Gauhati Medical College following all legal formalities. The collected specimens were grouped after noting the age and the history (menstrual and parity) of the cadaver. The cervix was dissected out from the rest of the uterus. From the different dissected specimen, approximately 3-5 cu mm. pieces were made and fixed in 10% formalin and was labelled carefully. The tissues were kept in 10% formalin for 24-48 hours. The fixed tissues were then processed for

Jebmh.com

embedding in paraffin and sectioned at 5 micrometer thickness in a 'rotary microtome' and the sections were stained by routine H and E according to the standard method.

The sections of the tissue were than studied under both low power and high power objective and different layers of the wall of the uterine cervix was observed. The mucosal thickness was measured with the 'spencer ocular' lens and objective micrometre scale.

OBSERVATIONS AND RESULTS: The wall of the cervix has three layers namely, mucosal layer, muscular layer and serosal layer. The mucosal layer of the cervix is thrown into folds similar to the branches of a tree. The mucosal layer can be divided into two parts, the epithelial lining and the stroma. The epithelial lining in the upper part is seen to be simple columnar epithelium. The columnar cells are tall in the reproductive group with light-stained cytoplasm and basally-placed nuclei. In the lower part of the canal, the epithelium is stratified squamous epithelium of nonkeratinised variety. The squamocolumnar junction is abrupt in most of the tissue and is found to be higher in the postmenopausal. In the upper part of the canal, there are patchy areas of cilia, which are maximum in the reproductive age group. The stroma contains cervical glands, which open into the luminal surface of the epithelium. The proportion of glands is more in the reproductive group (Fig. 8) and in the newborn (Fig. 6) of the pre-reproductive age group. The number of glands decreases in the postmenopausal group (Fig. 10 and Fig. 11). The cervical glands are lined by simple columnar epithelium without cilia. The stroma contains blood vessels and fibromuscular tissue. The average mucosal thickness are 1.915 mm, 3.053 mm, 1.909 mm in the prereproductive, reproductive and postmenopausal group, respectively. Intergroup variation of the mucosal thickness has been shown with the help of a bar diagram (Fig. 2.1).

The muscle layer contains smooth muscle cells along with dense connective tissue containing both collagen and elastic fibres. It has been noticed that the muscle cells are maximum in the reproductive age group and is comparatively less in the pre-reproductive and menopausal group. In the menopausal group, the elastic and collagen fibres are replaced by fibrous tissue. The serosal layer of the cervix is present only posteriorly over the supravaginal part of the cervix. It is observed that in all the age groups, the serosal layer contains mesothelium over a connective tissue lamina propria.

Reproductive Status	Number	%				
Pre-Reproductive	20	33.33				
Reproductive	20	33.33				
Postmenopausal	20	33.33				
Table 1: Distribution of Samples Accordingto Their Reproductive Status						

Original Article

Fig. 1.1: Pie Diagram Showing the % Distribution of Sample Women According to Their Reproductive Status

Reproductive Status	Mean±SD	95% CI			
Pre-Reproductive	1.915±0.3103	1.770, 2.060			
Reproductive	3.053±0.5124	2.813, 3.293			
Postmenopausal	1.909±0.2925	1.772, 2.046			
<i>Table 2: Mean and SD Values of Mucosal Thickness of Cervix among Sample Women w.r.t. Their Reproductive Status</i>					

Fig. 2.1: Graph Showing the Mean and SD Values of Mucosal Thickness of Cervix among the Sample Women w.r.t. Reproductive Status

Comparison: A comparative analysis of the mucosal thickness of cervix among the three groups was done. To fulfil this purpose, 't'-test was employed.

Reproductive Status	Mean	SD	d.f.	t-value	Significance Level	
Pre-Reproductive	1.915	0.3103	38	3 20	9 406**	n < 0.01
Reproductive	3.053	0.5124		0.490	μ<0.01	
Table 3: Mean and SD Scores of Mucosal Thickness of Cervix						
among the Pre-Reproductive and Reproductive Groups with 't'-Value						

** \rightarrow highly significant; d.f. \rightarrow degrees of freedom.

(The Critical Value or p-value of t for 38 d.f. at 0.01 level of significance is 2.71).

Fig. 3.1: Graph Showing the Mean and SD Values of Mucosal Thickness of Cervix among the Pre-Reproductive and Reproductive Women

Reproductive Status	Mean	SD	d.f.	t- value	Significance Level
Pre-Reproductive	1.915	0.3103			
Postmenopau sal	1.909	0.2925	38	0.0629	N.S. (p>0.01)
Table 4: Mean and SD Scores of Mucosal Thickness of Cervix among the Pre-Reproductive and Post-					

Menopausal Groups with 't'-Value

 $\text{N.S.} \rightarrow \text{Not Significant}$

Fig. 4.1: Graph Showing the Mean and SD Values of Mucosal Thickness of Cervix among the Pre-Reproductive and Postmenopausal Women

Reproductive Status	Mean	SD	d.f.	t-value	Significance Level	
Reproductive	3.053	0.5124	38			
Postmenopa usal	1.909	0.2925		8.671**	p<0.01	
Table 5: Mean and SD Scores of Mucosal Thickness of Cervix among the Reproductive and Postmenopausal Groups with 't'-Value						

** \rightarrow highly significant; d.f. \rightarrow degrees of freedom

Fig. 5.1: Graph Showing the Mean and SD Values of Mucosal Thickness of Cervix among the Reproductive and Postmenopausal Women

Fig. 6: Photo Micrograph of the Cervix showing the Cervical Glands in the Newborn (Low Power Magnification)

Jebmh.com

Fig. 7: Photomicrograph of the Cervix showing the Glands in the Newborn (High Power Magnification)

Fig. 8: Photomicrograph of the Cervix showing the Maximum Number of Cervical Glands in the Reproductive Age (Low Power Magnification)

Fig. 9: Photomicrograph of the Cervix showing the Squamocolumnar (Low Power Magnification)

Fig. 10: Photomicrograph of the Cervix in the Postmenopausal Age showing Decreased Number of Cervical Glands (Low Power Magnification)

Fig. 11: Photomicrograph of the Cervix showing the High Power Magnification of the Cervical Glands in the Menopausal Age

DISCUSSION: The mucosal layer of the cervix is thrown into folds that resemble the branches of a tree; this is analogous with the findings of Bloom and Fawcett¹ 1978, Ham and Cormack² 1979, Odeblad E³ 1996, Grays⁴ 2008 and Singh⁵ 2014. The mucosal thickness in the upper part of the canal is 1.915 mm, 3.053 mm and 1.909 mm in the pre-reproductive, reproductive and postmenopausal group, respectively. The mucosal thickness being maximum in the reproductive. This is similar to the findings of Bloom and Fawcett¹ 1978, Bannister and Dyson⁶ 1995 and Moghissi⁷ 1999.

The epithelial lining in the upper part of the canal is seen to be simple columnar epithelium. The cells have lightly stained cytoplasm and dark stained basally placed nucleus. This is analogous with the reports of Copenhaver⁸ 1964, Bloom and Fawcett¹ 1978, Tindall⁹ 1994 and Anderson J. B. and Genadry¹⁰ 1998, Dutta¹¹ 2014. In the upper part of the canal, there are patchy areas of cilia which are more in the reproductive age group; this is similar to the findings of Copenhaver⁸ 1964, Bloom and Fawcett¹ 1978, Ham and Cormack² 1979 and Brudenell¹² 1987 and Singh⁵ 2014. There is an abrupt change of the epithelium from columnar to non-keratinised stratified squamous towards the lower part of the cervix, this is analogues to the findings of Copenhaver⁸ 1964, Grays⁴ 2008, Ross¹³ 2011 and Singh⁵ 2014, Dutta¹¹ 2014. The site of squamocolumnar junction is variable, in the menopausal, it is higher, this is similar to the observation of Anderson and Genadry¹⁰ 1998 and Grays⁴ 2008. The muscular layer contains smooth muscle along with dense connective tissue, which is similar to the findings of Bannister and Dyson⁶ 1995. The muscle fibres are more in the reproductive age and in the postmenopausal, elastic and collagen fibres are replaced by fibrous tissue, this corresponds to the observation of Blaikley JB¹⁴ 1963. The serosal layer in the present was seen only over the supravaginal part in all the age group and consists of mesothelium overlying a connective tissue lamina propria, this observation is akin with the reports of Bannister and Dyson⁶ 1995.

Jebmh.com

CONCLUSION: The study has detected certain differences in the histological architecture in the pre-reproductive, reproductive and postmenopausal age groups. As pathology of this part of the uterus is common, the observations of the study may facilitate in the diagnosis and treatment of diseases related to the cervix. Further study in this field can be undertaken by observing the tissue under electron microscope.

REFERENCES

- Bloom W, Fawcett DW. The female reproductive system. In: A text book of histology. 10th edn. Philadelphia: WB Saunder Company 1978:883-894.
- Arthur HW, David CH. The female reproductive system. In: Histology. 8th edn. Philadelphia and Toronto: Lippincott Company 1979:862-863.
- Odeblad E, Menarguez M, Slettvol J, et al. How to study the cervical secretary system and role in natural family planning. Bulletin of the Ovulation Method Research and Reference Center of Australia 1996;23(2):3-20.
- 4. Standring S. Gray' sanatomy. 40th edn. Philadelphia: Churchill Livingstone Elsevier 2008:p. 1291.
- Vasudeva N, Mishra S. Inderbir Singh's textbook of human histology. 7th edn. Jaypee Brothers, Medical Publishers Pvt Limited 2014:p. 359.
- Banister LH, Dyson M. Reproductive system. In: Williams PL, Bannister LH, Berry MM, et al, eds. Gray's anatomy. 38th edn. ELBS, Edinburgh: Churchill Livingston 1995:1869-1875.

- Kamran MS. Cervix. In: Knobil E, Neill JD, eds. Encyclopedia of reproduction. Vol. 1. Academic Press 1999:546-553.
- Copenhaver WM, Richard BP, Mary BB. In: Bailey's text book of histology. 16th edn. Ballimore: Williams and Wilkens 1964:p. 599.
- 9. Tindall VR. In: Jeffcoate's principles of gynaecology. 5th edn. Butterworths 1994:p. 16-52,395-416,120.
- Anderson JR, Genadry R. Anatomy and embryology. In: Berek JS, Adashi E, Hellard PA, eds. Novak's gynecology. 12th edn. Baltimore, MD: Williams Wilkins 1998:100-101.
- Dutta DC. Text Book of Gynaeclogy including contraceptive. 6th edn. Jaypee Brothers, Medical Publishers Pvt Limited 2014:8-9.
- Brudenell JM, Chamberlaim GVP, Fuirwealher DWI, et al. In: Gynecology by ten teachers. 14th edn. USA: Oxford University Press 1987:1-23.
- Ross MH, Pawlina W. In: Histology- a text and atlas: with correlated cell and molecular biology. 6th edn. Wolters Kluwer/Lippincott Williams & Wilkins Health 2011;853-854.
- Blaikley JB. The cervix uteri. In: Bovrene, Claye SA, eds. British obstetric and gynaecological practice. 3rd edn. William Heinemann Medical Books 1963:p. 266.